Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 54(11): e9941, 2021. tab, graf
Article in English | LILACS | ID: biblio-1339454

ABSTRACT

Acute kidney injury (AKI) is a common complication in seriously ill patients, while renal ischemia-reperfusion (I/R) injury is the most frequent event in this oxidative renal injury. N-acetylcysteine (NAC) is a small molecule containing a thiol group that has antioxidant properties, promoting detoxification and acting directly as a free radical scavenger. In this study, the protective effect of NAC was investigated in short-term (30 min) and long-term (45 min) ischemic AKI. This was achieved via clamping of the renal artery for 30 or 45 min in Wistar rats to induce I/R injury. AKI worsened with a longer period of ischemia (45 compared to 30 min) due to probable irreversible damage. Preconditioning with NAC in short-term ischemia improved renal blood flow and increased creatinine clearance by reducing oxidative metabolites and increasing antioxidant capacity. Otherwise, NAC did not change these parameters in the long-term ischemia. Therefore, this study demonstrated that the period of ischemia determines the severity of the AKI, and NAC presented antioxidant effects in short-term ischemia but not in long-term ischemia, confirming that there is a possible therapeutic window for its renoprotective effect.


Subject(s)
Humans , Animals , Rats , Reperfusion Injury/prevention & control , Acute Kidney Injury/prevention & control , Acetylcysteine/therapeutic use , Rats, Wistar , Oxidative Stress , Kidney
2.
Braz. j. med. biol. res ; 51(2): e6373, 2018. tab, graf
Article in English | LILACS | ID: biblio-889016

ABSTRACT

Cyclosporin-A (CsA) is an immunosuppressant associated with acute kidney injury and chronic kidney disease. Nephrotoxicity associated with CsA involves the increase in afferent and efferent arteriole resistance, decreased renal blood flow (RBF) and glomerular filtration. The aim of this study was to evaluate the effect of Endothelin-1 (ET-1) receptor blockade with bosentan (BOS) and macitentan (MAC) antagonists on altered renal function induced by CsA in normotensive and hypertensive animals. Wistar and genetically hypertensive rats (SHR) were separated into control group, CsA group that received intraperitoneal injections of CsA (40 mg/kg) for 15 days, CsA+BOS and CsA+MAC that received CsA and BOS (5 mg/kg) or MAC (25 mg/kg) by gavage for 15 days. Plasma creatinine and urea, mean arterial pressure (MAP), RBF and renal vascular resistance (RVR), and immunohistochemistry for ET-1 in the kidney cortex were measured. CsA decreased renal function, as shown by increased creatinine and urea. There was a decrease in RBF and an increase in MAP and RVR in normotensive and hypertensive animals. These effects were partially reversed by ET-1 antagonists, especially in SHR where increased ET-1 production was observed in the kidney. Most MAC effects were similar to BOS, but BOS seemed to be better at reversing cyclosporine-induced changes in renal function in hypertensive animals. The results of this work suggested the direct participation of ET-1 in renal hemodynamics changes induced by cyclosporin in normotensive and hypertensive rats. The antagonists of ET-1 MAC and BOS reversed part of these effects.


Subject(s)
Animals , Male , Pyrimidines/pharmacology , Cyclosporine/toxicity , Acute Kidney Injury/chemically induced , Acute Kidney Injury/prevention & control , Endothelin Receptor Antagonists/pharmacology , Immunosuppressive Agents/toxicity , Urea/blood , Immunohistochemistry , Immunoblotting , Reproducibility of Results , Rats, Wistar , Creatinine/blood , Acute Kidney Injury/physiopathology , Endothelin Receptor Antagonists/therapeutic use , Bosentan , Hemodynamics , Kidney/drug effects
3.
Braz. j. med. biol. res ; 46(10): 824-830, 24/set. 2013. tab, graf
Article in English | LILACS | ID: lil-688561

ABSTRACT

Interest in the role of extracellular vesicles in various diseases including cancer has been increasing. Extracellular vesicles include microvesicles, exosomes, apoptotic bodies, and argosomes, and are classified by size, content, synthesis, and function. Currently, the best characterized are exosomes and microvesicles. Exosomes are small vesicles (40-100 nm) involved in intercellular communication regardless of the distance between them. They are found in various biological fluids such as plasma, serum, and breast milk, and are formed from multivesicular bodies through the inward budding of the endosome membrane. Microvesicles are 100-1000 nm vesicles released from the cell by the outward budding of the plasma membrane. The therapeutic potential of extracellular vesicles is very broad, with applications including a route of drug delivery and as biomarkers for diagnosis. Extracellular vesicles extracted from stem cells may be used for treatment of many diseases including kidney diseases. This review highlights mechanisms of synthesis and function, and the potential uses of well-characterized extracellular vesicles, mainly exosomes, with a special focus on renal functions and diseases.


Subject(s)
Humans , Cell Communication/physiology , Cell Membrane/physiology , Exosomes/physiology , Kidney Diseases , Kidney Diseases/diagnosis , Kidney Diseases/physiopathology , Kidney Diseases/therapy
4.
Braz. j. med. biol. res ; 43(10): 957-963, Oct. 2010. ilus, tab
Article in English | LILACS | ID: lil-561221

ABSTRACT

Hyperuricemia is associated with renal stones, not only consisting of uric acid (UrAc) but also of calcium oxalate (CaOx). Glycosaminoglycans (GAGs) are well-known inhibitors of growth and aggregation of CaOx crystals. We analyzed the effect of noncrystalline UrAc on GAG synthesis in tubular distal cells. MDCK (Madin-Darby canine kidney) cells were exposed to noncrystalline UrAc (80 µg/mL) for 24 h. GAGs were labeled metabolically and characterized by agarose gel electrophoresis. The expression of proteoglycans and cyclooxygenase 2 (COX-2) was assessed by real-time PCR. Necrosis, apoptosis and prostaglandin E2 (PGE2) were determined by acridine orange, HOESCHT 33346, and ELISA, respectively. CaOx crystal endocytosis was evaluated by flow cytometry. Noncrystalline UrAc significantly decreased the synthesis and secretion of heparan sulfate into the culture medium (UrAc: 2127 ± 377; control: 4447 ± 730 cpm) and decreased the expression of perlecan core protein (UrAc: 0.61 ± 0.13; control: 1.07 ± 0.16 arbitrary units), but not versican. Noncrystalline UrAc did not induce necrosis or apoptosis, but significantly increased COX-2 and PGE2 production. The effects of noncrystalline UrAc on GAG synthesis could not be attributed to inflammatory actions because lipopolysaccharide, as the positive control, did not have the same effect. CaOx was significantly endocytosed by MDCK cells, but this endocytosis was inhibited by exposure to noncrystalline UrAc (control: 674.6 ± 4.6, CaOx: 724.2 ± 4.2, and UrAc + CaOx: 688.6 ± 5.4 geometric mean), perhaps allowing interaction with CaOx crystals. Our results indicate that UrAc decreases GAG synthesis in MDCK cells and this effect could be related to the formation of UrAc and CaOx stones.


Subject(s)
Animals , Dogs , Endocytosis/drug effects , Epithelial Cells/chemistry , Glycosaminoglycans/biosynthesis , Kidney Tubules, Distal/cytology , Proteoglycans/biosynthesis , Uric Acid/pharmacology , Apoptosis/drug effects , Cell Line , /biosynthesis , Dinoprostone/biosynthesis , Electrophoresis, Agar Gel , Enzyme-Linked Immunosorbent Assay , Epithelial Cells/drug effects , Flow Cytometry , Kidney Tubules, Distal/metabolism , Necrosis , Polymerase Chain Reaction
5.
Braz. j. med. biol. res ; 42(7): 614-620, July 2009. graf
Article in English | LILACS | ID: lil-517802

ABSTRACT

Nephrotoxicity is the main side effect of antibiotics such as gentamicin. Preconditioning has been reported to protect against injuries as ischemia/reperfusion. The objective of the present study was to determine the effect of preconditioning with gentamicin on LLC-PK1 cells. Preconditioning was induced in LLC-PK1 cells by 24-h exposure to 2.0 mM gentamicin (G/IU). After 4 or 15 days of preconditioning, cells were again exposed to gentamicin (2.0 mM) and compared to untreated control or G/IU cells. Necrosis and apoptosis were assessed by acridine orange and HOESCHT 33346. Nitric oxide (NO) and endothelin-1 were assessed by the Griess method and available kit. Heat shock proteins were analyzed by Western blotting. After 15 days of preconditioning, LLC-PK1 cells exhibited a significant decrease in necrosis (23.5 ± 4.3 to 6.5 ± 0.3%) and apoptosis (23.5 ± 4.3 to 6.5 ± 2.1%) and an increase in cell proliferation compared to G/IU. NO (0.177 ± 0.05 to 0.368 ± 0.073 ìg/mg protein) and endothelin-1 (1.88 ± 0.47 to 2.75 ± 0.53 pg/mL) production significantly increased after 15 days of preconditioning compared toG/IU. No difference in inducible HSP 70, constitutive HSC 70 or HSP 90 synthesis in tubular cells was observed afterpreconditioning with gentamicin. The present data suggest that preconditioning with gentamicin has protective effects on proximal tubular cells, that involved NO synthesis but not reduction of endothelin-1 or production of HSP 70, HSC 70, or HSP 90. We conclude that preconditioning could be a useful tool to prevent the nephrotoxicity induced by gentamicin.


Subject(s)
Animals , Anti-Bacterial Agents/pharmacology , Endothelin-1/biosynthesis , Gentamicins/pharmacology , Heat-Shock Proteins/biosynthesis , Kidney Tubules, Proximal/drug effects , Nitric Oxide/biosynthesis , Apoptosis/drug effects , Blotting, Western , Cell Proliferation/drug effects , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , LLC-PK1 Cells , Necrosis/chemically induced , Swine
SELECTION OF CITATIONS
SEARCH DETAIL